Cellular homology

In mathematics, cellular homology in algebraic topology is a homology theory for the category of CW-complexes. It agrees with singular homology, and can provide an effective means of computing homology modules.

Definition

If X {\displaystyle X} is a CW-complex with n-skeleton X n {\displaystyle X_{n}} , the cellular-homology modules are defined as the homology groups Hi of the cellular chain complex

C n + 1 ( X n + 1 , X n ) C n ( X n , X n 1 ) C n 1 ( X n 1 , X n 2 ) , {\displaystyle \cdots \to {C_{n+1}}(X_{n+1},X_{n})\to {C_{n}}(X_{n},X_{n-1})\to {C_{n-1}}(X_{n-1},X_{n-2})\to \cdots ,}

where X 1 {\displaystyle X_{-1}} is taken to be the empty set.

The group

C n ( X n , X n 1 ) {\displaystyle {C_{n}}(X_{n},X_{n-1})}

is free abelian, with generators that can be identified with the n {\displaystyle n} -cells of X {\displaystyle X} . Let e n α {\displaystyle e_{n}^{\alpha }} be an n {\displaystyle n} -cell of X {\displaystyle X} , and let χ n α : e n α S n 1 X n 1 {\displaystyle \chi _{n}^{\alpha }:\partial e_{n}^{\alpha }\cong \mathbb {S} ^{n-1}\to X_{n-1}} be the attaching map. Then consider the composition

χ n α β : S n 1 e n α χ n α X n 1 q X n 1 / ( X n 1 e n 1 β ) S n 1 , {\displaystyle \chi _{n}^{\alpha \beta }:\mathbb {S} ^{n-1}\,{\stackrel {\cong }{\longrightarrow }}\,\partial e_{n}^{\alpha }\,{\stackrel {\chi _{n}^{\alpha }}{\longrightarrow }}\,X_{n-1}\,{\stackrel {q}{\longrightarrow }}\,X_{n-1}/\left(X_{n-1}\setminus e_{n-1}^{\beta }\right)\,{\stackrel {\cong }{\longrightarrow }}\,\mathbb {S} ^{n-1},}

where the first map identifies S n 1 {\displaystyle \mathbb {S} ^{n-1}} with e n α {\displaystyle \partial e_{n}^{\alpha }} via the characteristic map Φ n α {\displaystyle \Phi _{n}^{\alpha }} of e n α {\displaystyle e_{n}^{\alpha }} , the object e n 1 β {\displaystyle e_{n-1}^{\beta }} is an ( n 1 ) {\displaystyle (n-1)} -cell of X, the third map q {\displaystyle q} is the quotient map that collapses X n 1 e n 1 β {\displaystyle X_{n-1}\setminus e_{n-1}^{\beta }} to a point (thus wrapping e n 1 β {\displaystyle e_{n-1}^{\beta }} into a sphere S n 1 {\displaystyle \mathbb {S} ^{n-1}} ), and the last map identifies X n 1 / ( X n 1 e n 1 β ) {\displaystyle X_{n-1}/\left(X_{n-1}\setminus e_{n-1}^{\beta }\right)} with S n 1 {\displaystyle \mathbb {S} ^{n-1}} via the characteristic map Φ n 1 β {\displaystyle \Phi _{n-1}^{\beta }} of e n 1 β {\displaystyle e_{n-1}^{\beta }} .

The boundary map

n : C n ( X n , X n 1 ) C n 1 ( X n 1 , X n 2 ) {\displaystyle \partial _{n}:{C_{n}}(X_{n},X_{n-1})\to {C_{n-1}}(X_{n-1},X_{n-2})}

is then given by the formula

n ( e n α ) = β deg ( χ n α β ) e n 1 β , {\displaystyle {\partial _{n}}(e_{n}^{\alpha })=\sum _{\beta }\deg \left(\chi _{n}^{\alpha \beta }\right)e_{n-1}^{\beta },}

where deg ( χ n α β ) {\displaystyle \deg \left(\chi _{n}^{\alpha \beta }\right)} is the degree of χ n α β {\displaystyle \chi _{n}^{\alpha \beta }} and the sum is taken over all ( n 1 ) {\displaystyle (n-1)} -cells of X {\displaystyle X} , considered as generators of C n 1 ( X n 1 , X n 2 ) {\displaystyle {C_{n-1}}(X_{n-1},X_{n-2})} .

Examples

The following examples illustrate why computations done with cellular homology are often more efficient than those calculated by using singular homology alone.

The n-sphere

The n-dimensional sphere Sn admits a CW structure with two cells, one 0-cell and one n-cell. Here the n-cell is attached by the constant mapping from S n 1 {\displaystyle S^{n-1}} to 0-cell. Since the generators of the cellular chain groups C k ( S k n , S k 1 n ) {\displaystyle {C_{k}}(S_{k}^{n},S_{k-1}^{n})} can be identified with the k-cells of Sn, we have that C k ( S k n , S k 1 n ) = Z {\displaystyle {C_{k}}(S_{k}^{n},S_{k-1}^{n})=\mathbb {Z} } for k = 0 , n , {\displaystyle k=0,n,} and is otherwise trivial.

Hence for n > 1 {\displaystyle n>1} , the resulting chain complex is

n + 2 0 n + 1 Z n 0 n 1 2 0 1 Z 0 , {\displaystyle \dotsb {\overset {\partial _{n+2}}{\longrightarrow \,}}0{\overset {\partial _{n+1}}{\longrightarrow \,}}\mathbb {Z} {\overset {\partial _{n}}{\longrightarrow \,}}0{\overset {\partial _{n-1}}{\longrightarrow \,}}\dotsb {\overset {\partial _{2}}{\longrightarrow \,}}0{\overset {\partial _{1}}{\longrightarrow \,}}\mathbb {Z} {\longrightarrow \,}0,}

but then as all the boundary maps are either to or from trivial groups, they must all be zero, meaning that the cellular homology groups are equal to

H k ( S n ) = { Z k = 0 , n { 0 } otherwise. {\displaystyle H_{k}(S^{n})={\begin{cases}\mathbb {Z} &k=0,n\\\{0\}&{\text{otherwise.}}\end{cases}}}

When n = 1 {\displaystyle n=1} , it is possible to verify that the boundary map 1 {\displaystyle \partial _{1}} is zero, meaning the above formula holds for all positive n {\displaystyle n} .

Genus g surface

Cellular homology can also be used to calculate the homology of the genus g surface Σ g {\displaystyle \Sigma _{g}} . The fundamental polygon of Σ g {\displaystyle \Sigma _{g}} is a 4 n {\displaystyle 4n} -gon which gives Σ g {\displaystyle \Sigma _{g}} a CW-structure with one 2-cell, 2 n {\displaystyle 2n} 1-cells, and one 0-cell. The 2-cell is attached along the boundary of the 4 n {\displaystyle 4n} -gon, which contains every 1-cell twice, once forwards and once backwards. This means the attaching map is zero, since the forwards and backwards directions of each 1-cell cancel out. Similarly, the attaching map for each 1-cell is also zero, since it is the constant mapping from S 0 {\displaystyle S^{0}} to the 0-cell. Therefore, the resulting chain complex is

0 3 Z 2 Z 2 g 1 Z 0 , {\displaystyle \cdots \to 0\xrightarrow {\partial _{3}} \mathbb {Z} \xrightarrow {\partial _{2}} \mathbb {Z} ^{2g}\xrightarrow {\partial _{1}} \mathbb {Z} \to 0,}

where all the boundary maps are zero. Therefore, this means the cellular homology of the genus g surface is given by

H k ( Σ g ) = { Z k = 0 , 2 Z 2 g k = 1 { 0 } otherwise. {\displaystyle H_{k}(\Sigma _{g})={\begin{cases}\mathbb {Z} &k=0,2\\\mathbb {Z} ^{2g}&k=1\\\{0\}&{\text{otherwise.}}\end{cases}}}

Similarly, one can construct the genus g surface with a crosscap attached as a CW complex with 1 0-cell, g 1-cells, and 1 2-cell. Its homology groups are H k ( Σ g ) = { Z k = 0 Z g 1 Z 2 k = 1 { 0 } otherwise. {\displaystyle H_{k}(\Sigma _{g})={\begin{cases}\mathbb {Z} &k=0\\\mathbb {Z} ^{g-1}\oplus \mathbb {Z} _{2}&k=1\\\{0\}&{\text{otherwise.}}\end{cases}}}

Torus

The n-torus ( S 1 ) n {\displaystyle (S^{1})^{n}} can be constructed as the CW complex with 1 0-cell, n 1-cells, ..., and 1 n-cell. The chain complex is 0 Z ( n n ) Z ( n n 1 ) Z ( n 1 ) Z ( n 0 ) 0 {\displaystyle 0\to \mathbb {Z} ^{\binom {n}{n}}\to \mathbb {Z} ^{\binom {n}{n-1}}\to \cdots \to \mathbb {Z} ^{\binom {n}{1}}\to \mathbb {Z} ^{\binom {n}{0}}\to 0} and all the boundary maps are zero. This can be understood by explicitly constructing the cases for n = 0 , 1 , 2 , 3 {\displaystyle n=0,1,2,3} , then see the pattern.

Thus, H k ( ( S 1 ) n ) Z ( n k ) {\displaystyle H_{k}((S^{1})^{n})\simeq \mathbb {Z} ^{\binom {n}{k}}} .

Complex projective space

If X {\displaystyle X} has no adjacent-dimensional cells, (so if it has n-cells, it has no (n-1)-cells and (n+1)-cells), then H n C W ( X ) {\displaystyle H_{n}^{CW}(X)} is the free abelian group generated by its n-cells, for each n {\displaystyle n} .

The complex projective space P n C {\displaystyle P^{n}\mathbb {C} } is obtained by gluing together a 0-cell, a 2-cell, ..., and a (2n)-cell, thus H k ( P n C ) = Z {\displaystyle H_{k}(P^{n}\mathbb {C} )=\mathbb {Z} } for k = 0 , 2 , . . . , 2 n {\displaystyle k=0,2,...,2n} , and zero otherwise.

Real projective space

The real projective space R P n {\displaystyle \mathbb {R} P^{n}} admits a CW-structure with one k {\displaystyle k} -cell e k {\displaystyle e_{k}} for all k { 0 , 1 , , n } {\displaystyle k\in \{0,1,\dots ,n\}} . The attaching map for these k {\displaystyle k} -cells is given by the 2-fold covering map φ k : S k 1 R P k 1 {\displaystyle \varphi _{k}\colon S^{k-1}\to \mathbb {R} P^{k-1}} . (Observe that the k {\displaystyle k} -skeleton R P k n R P k {\displaystyle \mathbb {R} P_{k}^{n}\cong \mathbb {R} P^{k}} for all k { 0 , 1 , , n } {\displaystyle k\in \{0,1,\dots ,n\}} .) Note that in this case, C k ( R P k n , R P k 1 n ) Z {\displaystyle C_{k}(\mathbb {R} P_{k}^{n},\mathbb {R} P_{k-1}^{n})\cong \mathbb {Z} } for all k { 0 , 1 , , n } {\displaystyle k\in \{0,1,\dots ,n\}} .

To compute the boundary map

k : C k ( R P k n , R P k 1 n ) C k 1 ( R P k 1 n , R P k 2 n ) , {\displaystyle \partial _{k}\colon C_{k}(\mathbb {R} P_{k}^{n},\mathbb {R} P_{k-1}^{n})\to C_{k-1}(\mathbb {R} P_{k-1}^{n},\mathbb {R} P_{k-2}^{n}),}

we must find the degree of the map

χ k : S k 1 φ k R P k 1 q k R P k 1 / R P k 2 S k 1 . {\displaystyle \chi _{k}\colon S^{k-1}{\overset {\varphi _{k}}{\longrightarrow }}\mathbb {R} P^{k-1}{\overset {q_{k}}{\longrightarrow }}\mathbb {R} P^{k-1}/\mathbb {R} P^{k-2}\cong S^{k-1}.}

Now, note that φ k 1 ( R P k 2 ) = S k 2 S k 1 {\displaystyle \varphi _{k}^{-1}(\mathbb {R} P^{k-2})=S^{k-2}\subseteq S^{k-1}} , and for each point x R P k 1 R P k 2 {\displaystyle x\in \mathbb {R} P^{k-1}\setminus \mathbb {R} P^{k-2}} , we have that φ 1 ( { x } ) {\displaystyle \varphi ^{-1}(\{x\})} consists of two points, one in each connected component (open hemisphere) of S k 1 S k 2 {\displaystyle S^{k-1}\setminus S^{k-2}} . Thus, in order to find the degree of the map χ k {\displaystyle \chi _{k}} , it is sufficient to find the local degrees of χ k {\displaystyle \chi _{k}} on each of these open hemispheres. For ease of notation, we let B k {\displaystyle B_{k}} and B ~ k {\displaystyle {\tilde {B}}_{k}} denote the connected components of S k 1 S k 2 {\displaystyle S^{k-1}\setminus S^{k-2}} . Then χ k | B k {\displaystyle \chi _{k}|_{B_{k}}} and χ k | B ~ k {\displaystyle \chi _{k}|_{{\tilde {B}}_{k}}} are homeomorphisms, and χ k | B ~ k = χ k | B k A {\displaystyle \chi _{k}|_{{\tilde {B}}_{k}}=\chi _{k}|_{B_{k}}\circ A} , where A {\displaystyle A} is the antipodal map. Now, the degree of the antipodal map on S k 1 {\displaystyle S^{k-1}} is ( 1 ) k {\displaystyle (-1)^{k}} . Hence, without loss of generality, we have that the local degree of χ k {\displaystyle \chi _{k}} on B k {\displaystyle B_{k}} is 1 {\displaystyle 1} and the local degree of χ k {\displaystyle \chi _{k}} on B ~ k {\displaystyle {\tilde {B}}_{k}} is ( 1 ) k {\displaystyle (-1)^{k}} . Adding the local degrees, we have that

deg ( χ k ) = 1 + ( 1 ) k = { 2 if  k  is even, 0 if  k  is odd. {\displaystyle \deg(\chi _{k})=1+(-1)^{k}={\begin{cases}2&{\text{if }}k{\text{ is even,}}\\0&{\text{if }}k{\text{ is odd.}}\end{cases}}}

The boundary map k {\displaystyle \partial _{k}} is then given by deg ( χ k ) {\displaystyle \deg(\chi _{k})} .

We thus have that the CW-structure on R P n {\displaystyle \mathbb {R} P^{n}} gives rise to the following chain complex:

0 Z n 2 Z 0 Z 2 Z 0 Z 0 , {\displaystyle 0\longrightarrow \mathbb {Z} {\overset {\partial _{n}}{\longrightarrow }}\cdots {\overset {2}{\longrightarrow }}\mathbb {Z} {\overset {0}{\longrightarrow }}\mathbb {Z} {\overset {2}{\longrightarrow }}\mathbb {Z} {\overset {0}{\longrightarrow }}\mathbb {Z} \longrightarrow 0,}

where n = 2 {\displaystyle \partial _{n}=2} if n {\displaystyle n} is even and n = 0 {\displaystyle \partial _{n}=0} if n {\displaystyle n} is odd. Hence, the cellular homology groups for R P n {\displaystyle \mathbb {R} P^{n}} are the following:

H k ( R P n ) = { Z if  k = 0  and  k = n  odd , Z / 2 Z if  0 < k < n  odd, 0 otherwise. {\displaystyle H_{k}(\mathbb {R} P^{n})={\begin{cases}\mathbb {Z} &{\text{if }}k=0{\text{ and }}k=n{\text{ odd}},\\\mathbb {Z} /2\mathbb {Z} &{\text{if }}0<k<n{\text{ odd,}}\\0&{\text{otherwise.}}\end{cases}}}

Other properties

One sees from the cellular chain complex that the n {\displaystyle n} -skeleton determines all lower-dimensional homology modules:

H k ( X ) H k ( X n ) {\displaystyle {H_{k}}(X)\cong {H_{k}}(X_{n})}

for k < n {\displaystyle k<n} .

An important consequence of this cellular perspective is that if a CW-complex has no cells in consecutive dimensions, then all of its homology modules are free. For example, the complex projective space C P n {\displaystyle \mathbb {CP} ^{n}} has a cell structure with one cell in each even dimension; it follows that for 0 k n {\displaystyle 0\leq k\leq n} ,

H 2 k ( C P n ; Z ) Z {\displaystyle {H_{2k}}(\mathbb {CP} ^{n};\mathbb {Z} )\cong \mathbb {Z} }

and

H 2 k + 1 ( C P n ; Z ) = 0. {\displaystyle {H_{2k+1}}(\mathbb {CP} ^{n};\mathbb {Z} )=0.}

Generalization

The Atiyah–Hirzebruch spectral sequence is the analogous method of computing the (co)homology of a CW-complex, for an arbitrary extraordinary (co)homology theory.

Euler characteristic

For a cellular complex X {\displaystyle X} , let X j {\displaystyle X_{j}} be its j {\displaystyle j} -th skeleton, and c j {\displaystyle c_{j}} be the number of j {\displaystyle j} -cells, i.e., the rank of the free module C j ( X j , X j 1 ) {\displaystyle {C_{j}}(X_{j},X_{j-1})} . The Euler characteristic of X {\displaystyle X} is then defined by

χ ( X ) = j = 0 n ( 1 ) j c j . {\displaystyle \chi (X)=\sum _{j=0}^{n}(-1)^{j}c_{j}.}

The Euler characteristic is a homotopy invariant. In fact, in terms of the Betti numbers of X {\displaystyle X} ,

χ ( X ) = j = 0 n ( 1 ) j Rank ( H j ( X ) ) . {\displaystyle \chi (X)=\sum _{j=0}^{n}(-1)^{j}\operatorname {Rank} ({H_{j}}(X)).}

This can be justified as follows. Consider the long exact sequence of relative homology for the triple ( X n , X n 1 , ) {\displaystyle (X_{n},X_{n-1},\varnothing )} :

H i ( X n 1 , ) H i ( X n , ) H i ( X n , X n 1 ) . {\displaystyle \cdots \to {H_{i}}(X_{n-1},\varnothing )\to {H_{i}}(X_{n},\varnothing )\to {H_{i}}(X_{n},X_{n-1})\to \cdots .}

Chasing exactness through the sequence gives

i = 0 n ( 1 ) i Rank ( H i ( X n , ) ) = i = 0 n ( 1 ) i Rank ( H i ( X n , X n 1 ) ) + i = 0 n ( 1 ) i Rank ( H i ( X n 1 , ) ) . {\displaystyle \sum _{i=0}^{n}(-1)^{i}\operatorname {Rank} ({H_{i}}(X_{n},\varnothing ))=\sum _{i=0}^{n}(-1)^{i}\operatorname {Rank} ({H_{i}}(X_{n},X_{n-1}))+\sum _{i=0}^{n}(-1)^{i}\operatorname {Rank} ({H_{i}}(X_{n-1},\varnothing )).}

The same calculation applies to the triples ( X n 1 , X n 2 , ) {\displaystyle (X_{n-1},X_{n-2},\varnothing )} , ( X n 2 , X n 3 , ) {\displaystyle (X_{n-2},X_{n-3},\varnothing )} , etc. By induction,

i = 0 n ( 1 ) i Rank ( H i ( X n , ) ) = j = 0 n i = 0 j ( 1 ) i Rank ( H i ( X j , X j 1 ) ) = j = 0 n ( 1 ) j c j . {\displaystyle \sum _{i=0}^{n}(-1)^{i}\;\operatorname {Rank} ({H_{i}}(X_{n},\varnothing ))=\sum _{j=0}^{n}\sum _{i=0}^{j}(-1)^{i}\operatorname {Rank} ({H_{i}}(X_{j},X_{j-1}))=\sum _{j=0}^{n}(-1)^{j}c_{j}.}

References

  • Albrecht Dold: Lectures on Algebraic Topology, Springer ISBN 3-540-58660-1.
  • Allen Hatcher: Algebraic Topology, Cambridge University Press ISBN 978-0-521-79540-1. A free electronic version is available on the author's homepage.